A theorem on irrationality of infinite series and applications
نویسنده
چکیده
Here and in the sequel we maintain the convention of [Bad] that all series which appear are supposed to be convergent. Moreover, (an) and (bn), n ≥ 1, always denote sequences of positive integers. Also, for the sake of brevity, we simply say “the series ∑∞ n=1 bn/an is irrational” instead of “the sum of the series ∑∞ n=1 bn/an is an irrational number”. We note that Theorem A is, in a certain sense, best possible. Indeed, for a given sequence (bn) of positive integers and a given positive integer t, we define the sequence (wn), wn = wn(bn, t), by w1 = 1 + tb1 and wn+1 = 1 + tbn+1w1 . . . wn for n ≥ 1. By induction one easily checks that the following equalities are true:
منابع مشابه
Application of measures of noncompactness to infinite system of linear equations in sequence spaces
G. Darbo [Rend. Sem. Math. Univ. Padova, 24 (1955) 84--92] used the measure of noncompactness to investigate operators whose properties can be characterized as being intermediate between those of contraction and compact operators. In this paper, we apply the Darbo's fixed point theorem for solving infinite system of linear equations in some sequence spaces.
متن کاملExistence of solutions of infinite systems of integral equations in the Frechet spaces
In this paper we apply the technique of measures of noncompactness to the theory of infinite system of integral equations in the Fr´echet spaces. Our aim is to provide a few generalization of Tychonoff fixed point theorem and prove the existence of solutions for infinite systems of nonlinear integral equations with help of the technique of measures of noncompactness and a generalization of Tych...
متن کاملIrrationality of certain infinite series II
In a recent paper a new direct proof for the irrationality of Euler's number e = ∞ k=0 1 k! and on the same lines a simple criterion for some fast converging series representing irrational numbers was given. In the present paper, we give some generalizations of our previous results. 1 Irrationality criterion Our considerations in [3] lead us to the following criterion for irrationality, where x...
متن کاملOn the $c_{0}$-solvability of a class of infinite systems of functional-integral equations
In this paper, an existence result for a class of infinite systems of functional-integral equations in the Banach sequence space $c_{0}$ is established via the well-known Schauder fixed-point theorem together with a criterion of compactness in the space $c_{0}$. Furthermore, we include some remarks to show the vastity of the class of infinite systems which can be covered by our result. The a...
متن کاملIrrationality Measures of log 2 and π/√3
1. Irrationality Measures An irrationality measure of x ∈ R \Q is a number μ such that ∀ > 0,∃C > 0,∀(p, q) ∈ Z, ∣∣∣∣x− pq ∣∣∣∣ ≥ C qμ+ . This is a way to measure how well the number x can be approximated by rational numbers. The measure is effective when C( ) is known. We denote inf {μ | μ is an irrationality measure of x } by μ(x), and we call it the irrationality measure of x. By definition,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006